If it's not what You are looking for type in the equation solver your own equation and let us solve it.
18x^2+47x+5=0
a = 18; b = 47; c = +5;
Δ = b2-4ac
Δ = 472-4·18·5
Δ = 1849
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1849}=43$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(47)-43}{2*18}=\frac{-90}{36} =-2+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(47)+43}{2*18}=\frac{-4}{36} =-1/9 $
| 1-2a+7a=-14 | | 3h+8-5h=h-7 | | 2t+5÷t-2=7÷2 | | 6z-4=z+16 | | (x-5)/6+(x+4)/5=7/6 | | 11-6k=-14 | | -9v=-5v+8 | | -4.9x^2+20x+75=0 | | -3(x-1)+2x=13-3x | | 2/3x-8+x=x/2+4/2-10 | | 18x+10x=2 | | (1/3)k+80=(1/2)k+120 | | .10x=9.7 | | -4.9x^2-20x+75=0 | | 8=33/s | | 3/2x-2=7/8 | | 8x+0x=4+4 | | 5(2c+9)-3c(c+8)=-42 | | -5+7c=5-3c | | x-5/6+x+4/5=7/6 | | w-2w+2w=6 | | 4(c-5.25)=51 | | 3(2x-5=2(3x-2) | | 5x+3.50x=19 | | 10-3z=7z | | 5(x-20)=7x+30 | | 41/3=3p | | 2/3x=1/3x+11=8 | | 2(3g-2)=g/6 | | 9j+9=6j+1+3j | | .10x=35 | | 4(x-9)+2=4x+6 |